
Pharmaceutical compositions suitable for the treatment of ophthalmic diseases. China, patent no. CN1756529

Pharmaceutical compositions suitable for the treatment of ophthalmic diseases. India, patent no. 219920 - WO2004/039351

Pharmaceutical compositions suitable for the treatment of ophthalmic diseases. EP, patent no. 1567125

Pharmaceutical composition in form of solid lipidic microparticles suitable to parenteral administration, patent no. 6,238,694 WO98/56362.

Solid lipidic nanospheres suitable to a fast internalization into cells, patent no. 6,685,960 WO00/30620

Novel use of solid lipid nanoparticles comprising cholesteryl propionate and/or cholesteryl butyrate, patent no. 0001365626

Formulations suitable to be administered transdermically containing active principles incorporated in sln, patent no. 0001375593 WO2008/041116
Difficult Products to Make

- Transdermal permeation of apomorphine through hairless mouse skin from microemulsions. Int. J. Pharm. 226, 47-51 (2001)
- Controlled release transdermal Apomorphine treatment for motor fluctuations in Parkinson’s disease Neurol Sci, Vol. 23, 99-100, 2002
- Nocturnal anomalous movement reduction and sleep microstructure analysis in parkinsonian patients during one night Neurol Sci. 24(3), 207-8 (2003)
- Pharmacokinetics and tissue distribution of Idarubicin-loaded Solid Lipid Nanoparticles after duodenal administration to rats. J. Pharm. Sci. 91, 1024-1033 (2002)
- Duodenal administration of solid lipid nanoparticles loaded with different percentages of Tobramycin- J.Pharm.Sci. (2003)
MICROEMULSIONs – Transdermal administration
Peira E. et Al. - Transdermal permeation of apomorphine through hairless mouse skin from microemulsions. Int. J. Pharm. 226, 47-51 (2001)

MICROEMULSIONs – Subcutaneous Administration
Bellò M. et Al. - Pertechnetate release from a water/oil microemulsion and an aqueous solution after subcutaneous inject in rabbits. Pharm Pharmacol. 46(6), 508-10 (1994 – June)

MICROEMULSIONs - Ocular Administration

SLNs – Process Scale – Up

SLNs – Reviews
Brioschi A. et Al. - Solid lipid nanoparticles: could they help to improve the efficacy of pharmacologic treatments for brain tumors? - Neurol Res. 2007 Apr; 29(3):324-30
Brioschi A. et Al. - Cholesterylbutyrate solid lipid nanoparticles as a butyric acid prodrug - Molecules. 2008 Feb 1;13(2):230-54.
Gasco MR et Al. - Chapter 10 - Solid lipid nanoparticles and microemulsions for drug delivery The CNS. Prog Brain Res. 2009;180:181-92
Gasco MR et al. – Chapter 13 - In Vivo Evaluations of Solid Lipid Nanoparticles and Microemulsions - DRUGS AND THE PHARMACEUTICAL SCIENCES, VOLUME 191, 219-238

SLNs – Diagnostics
DIFFICULT PRODUCTS TO MAKE

SCIENTIFIC PUBLICATIONS

SLNs – Exvivo / invitro studies - cell lines

Pellizzaro C. et Al. - Cholesteryl butyrate in solid lipid nanospheres as an alternative approach for butyric acid delivery - Anticancer Research. 19, 3921-3926 (1999)

Miglietta A. et Al. - Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel - Int.J.Pharm. 210, 61-67 (2000)

Zara G.P. et Al. - Effects of cholesteryl butyrate solid lipid nanoparticles in leukemia cell lines - Pharm. Research (submitted)

Gobbi M. Et Al - Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide.- Biomaterials. 2010 Sep;31(25):6519-29

Minelli R. et Al. - Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells - Br J Pharmacol. 2011 Nov

SLNs – Transdermal administration

SCIENTIFIC PUBLICATIONS

SLNs – Intravenous administration – Intraperitoneal administration

Bocca C. et Al. - Phagocytic uptake of fluorescent stealth and non-stealth solid lipid nanoparticles - Int. J.Pharm. 175, 185-193 (1998)
Zara GP et Al. - Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN) - Pharmaco Res. 40(3), 281-6 (1999)
Podio V. et Al. - Biodistribution of Stealth and non-stealth solid lipid nanoparticles - J.Pharm.Pharmacol. 52,1057-1063 (2000)
Zara G.P. et Al. - Intravenous administration to rabbits of non-stealth and stealth doxorubicin loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and in other tissues - J. Drug Targeting 10, 327-335 (2002)
Rezzani R. et Al. - Melatonin delivery in solid lipid nanoparticles: prevention of cyclosporine A induced cardiac damage - J Pineal Res. (2009)

SLNs – Oral/ /Duodenal administration

Cavalli R. et Al. - Duodenal administration of solid lipid nanoparticles loaded with different percentages of Tobramycin - J.Pharm.Sci. (2003)

SLNs – Eye Topical administration

Cavalli R. et Al. - Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin - Int. J. Pharm. 238, 241-245 (2002)
Strettoi et Al - Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. -- -v Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18706-11